SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK

Subject with Code: FEM IN STRUCTURAL ENGINEERING(19CE1005) **Regulation:** R19

2. (a) What are the merits, demerits and limitations of Finite Element Methods?

Course & Branch: M.TECH- STRUCTURAL ENGINEERING

Year & Sem: I-M.TECH & II-Sem

UNIT-I

INTRODUCTION AND PRINCIPLES OF ELASTICITY

1. Explain the different steps involved in FEM [12M]

(b) Explain in detail finite element method procedure with an example. [6M]

[6M]

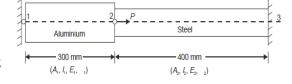
- 3. What is potential energy? State and explain the principle of minimum potential energy. [12M]
- 4. Using Rayleigh Ritz method determine the expression for maximum displacement, when The cantilever beam subjected to point W,KN at the free end. Also, compare it with the standard expression. [12M]
- 5. Using Rayleigh-Ritz method determine the expression for deflection and B.M in a SSB Subjected to udl over entire span. Find the deflection and moment at mid span and Compare with exact solution. [12M]
- 6. Draw a typical three-dimensional element and indicate state of stress in their positive Sense and also derive the equations of equilibrium in case of a 3-D stress system. [12M]
- 7. A beam AB of span L simply supported at ends and carrying a concentrated load W at the Centre C .Determine the deflection At mid span by using Rayleigh-Ritz method and compare with exact solution. [12M]
- 8. (a) Explain plane stress problem and plane strain problems. [6M] (b) Explain axi-symmetric problem. [6M]
- 9. (a) Explain discretization and classification of discretization. [6M] (b) Explain nodes at discontinuities. [6M]
- 10. A bar of uniform cross section is clamped at one end and left free at other end and free at End is Subjected to a uniform axial load P. Calculate the displacement and stress in a bar by Using two terms polynomial and 3 terms polynomial. Compare with exact solution.[12M]

UNIT-II

ONE DIMENSIONAL FEM

1. Derive Stiffness matrix for 1D – two noded linear bar element.

[12M]


- 2. A 2 Noded truss element having the nodal displacement are u_1 =5mm and u_2 =8mm at the ends. Calculate the displacement at x=L/4,L/3 and L/2.
- 3. Determine the nodal displacements at node 2, stresses in each material and element stiffness matrix for each element as shown in Fig., due to applied [12M] force

 $P = 400 \times 10^3 N$.

A1 = 2400 mm 2 & A2 = 1200 mm 2

L 1 = 300 mm & L2 = 400 mm

 $E1 = 0.7 \times 105 \text{ N/mm} 2 \& E2 = 2 \times 105 \text{ N/mm} 2$

- 4. Briefly explain shape function and derive shape function for 1D – two noded line element. [12M]
- **5.** Consider a bar as shown in figure. Cross sectional area of the bar is 750 mm² and $E = 2x10^5 N/mm^2$

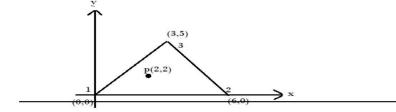
If $u_1=0.5$ mm and $u_2=0.625$ mm.Calculate the following

[12M]

i) Displacement at point(p)

ii) Starin

 $x_1 = 375 \text{mm}$ $x_2 = 500 \text{mm}$


 $x_3 = 575 \text{mm}$

- iii) Stress
- iv) Element Stiffness Matrix
- v) Strain Energy
- 6. Derive of the displacement function(u) and shape function (N) for 1-D linear bar element based on global coordinate approach. [12M]
- 7. Derive the shape function, strain displacement matrix element stiffness matrix for a two noded 1-D [12M]
- 8. A 1-D 3 noded bar element at X_1 =20mm at first node, X=24mm at middle node and $X_2=36$ mm.Calculate the following [12M]
 - (i) shape function N_1 and N_2 at the middle point P.
 - (ii) if u_1 =3mm and u_2 =-5, calculate the displacement u at point P.
- 9. A 2 Noded truss element having the nodal displacement are u_1 =6mm and u_2 =9mm at the ends. Calculate the displacement at x=L/4,L/3 and L/2. [12M]
- 10. What is static condensation? Explain procedure of static condensation [12M]

UNIT-III

TWO DIMENSIONAL FEM

- 1. Derive matrix equation for 2-D element(CST element). [12M]
- 2. (a) Differentiate between CST and LST elements. [12M]
 - (b) Evaluate the shape functions N_1 , N_2 and N_3 at the interior point P for the triangular element shown in the figure below.

- 3. Derive shape functions for four noded rectangular elements. Use natural co-ordinate system.[12M]
- 4. Write and briefly explain the different types of elements for plain stress and plain strain analysis. [12M]
- 5. Derive the shape function for the Constant strain triangle element (CST) element. [12M]
- 6. Derive the strain-displacement matrix for CST element. [12M]
- 7. Explain about [12M]
 - (a) Geometric invariance
 - (b) Convergent and compatibility requirements
- 8. Derive the shape function and strain-displacement for an rectangular 4-noded element.[12M]
- 9. Write down the following?

[12M]

- (c) Global coordinate system
- (d) Local coordinate system
- (e) Natural coordinate system
- (f) Discretization
- 10. Derive the Shape functions for the 3-noded triangle element (or) L.D.T (or) C.S.T. [12M]

UNIT-IV

ISOPARAMETRIC FORMULATIONS AND AXI-PARAMETRIC ANALYSIS

1.	Explain the isoperimetric concept in finite element analysis.	[12M]
2.	Explain the terms isoperimetric, sub parametric and super parametric elements.	[12M]
3.	Derive the Jaccobian matrix for 4-noded rectangular element.	[12M]
4.	Explain the formulation of 4-noded 2-D iso-parametric quadrilateral element. Derive the displacement matrix and stiffness matrix.	he strain [12M]
5.	Derive the shape function for 4-Noded isoperimetric quadrilateral element.	[12M]
6.	Derive the strain-displacement matrix for 4-Noded isoperimetric quadrilateral element	. [12M]
7.	Derive the shape function for 8-Noded isoperimetric quadrilateral element.	[12M]
8.	Explain the lagrangian and serendipity elements.	[12M]
9.	Derive the shape function for Axisymmetric (Rectangular) element.	[12M]
10	Explain the axi symmetric analysis and axi-symmetrical formulation	[12M]

UNIT-V

THREE DIMENSIONAL FEM AND FINITE ELEMENT ANALYSIS OF PLATES

1.	Explain the basic theory of plate bending.	[12M]
2.	Explain the basic relationships in plate bending theory.	[12M]
3.	Explain about different types of 3-D solid elements.	[12M]
4.	Explain about Hexahedral Isoperimetric elements.	[12M]
5.	What are the three dimensional stresses and strains explain the relation between them. [12M]	
6.	Write the stiffness matrix for a hexahedral element.	[12M]
7.	Explain basic relations in thin plate theory.	[12M]
8.	Briefly explain about Mindlin's approximations.	[12M]
9.	Explain finite element formulation for 8-noded isoperimetric solid element	[12M]
10.	Explain stress resultants in thin plates.	[12M]